Royal Netherlands Institute for Sea Research
Royal Netherlands
Institute for Sea Research
Phone number
+31 (0)222 36 9357
Location
Texel
Function
Head of Scientific Department

Prof. Dr. Myron Peck

Head of Scientific Department

‘Not just gloom and doom in changing seas’

Biological oceanographer Myron Peck is head of the Department of Coastal Systems at NIOZ. Apart from his management tasks, Peck researches the effects of changing environmental conditions on growth, reproduction and dispersal of numerous animal species. “I am particularly interested in commercially interesting fish species.”

Activity threshold

“With my group, we use laboratory experiments to help understand how marine food webs will respond to warming temperatures or changing acidity and oxygen levels. For example, fish are cold-blooded and increase their swimming and feeding activity with increasing temperature. As these activities increase, the oxygen demand grows as well and, after some warm threshold, a species will start to feed and grow poorly. How do those thresholds and sensitivities compare for traditional species and newer species entering our regional waters? Can fish adapt to these changes by altering where they feed and when they reproduce? When combined with information on fish diets in the field, all of this information can be used in computer models to test the potential effects of climate change on the food web.”

Every disadvantage… holds a chance

From an ecological point of view, climate change is an unwanted and bad outcome of human activities. However, some fisheries might profit in the future if they are ready to move away from traditional species (herring and cod are likely climate losers in our area) and move towards fishing newcomers. Our work at NIOZ helps understand ecological change and predict the winners and losers to provide much needed science-based advice to policymakers developing climate change adaptation policies.”

Future of the sea

“Sustainable fisheries is one of three pillars under the international EU-project Future Mares, that I coordinate. Within this project, we look at so-called Nature-Based Solutions. That means we try to find possibilities to use the power of nature to protect and restore ecosystems.”

Read more +
Interests

Research interests

My research interests encompass a broad range of aspects relating to functioning and drivers of estuarine and marine species and ecosystems particularly:

  • coupling of species life history and physiology including evaluating abiotic and biotic factors impacting vital rates (growth, survival, feeding, reproduction) of populations;
  • utilisation of bioenergetics, individual-based and biophysical models to explore various issues such feeding-growth and the spatial and temporal dynamics of transport / connectivity;
  • social-ecological issues surrounding the sustainable exploitation of living marine resources and advancing aquaculture;
  • projecting the impacts of climate change and other (interacting) anthropogenic drivers to provide science-based advice needed by managers and policymakers.

My group’s research includes field, laboratory and modeling studies conducted on key members of food webs from plankton (including copepods to gelatinous species) to various life stages of estuarine and marine fish species with emphasis on early life stages of ecologically and commercially important fishes. Several ongoing research programs are utilizing spatially-explicit, biophysical modelling approaches including end-to-end models (from physics to fish to fisheries). Central to advancing an understanding of social-ecological systems includes research integrating stakeholders such as industry (transdisciplinary research).

Functions

Functions

 

Publications

Publications

Please find my list of publications at the bottom of this webpage or on Google Scholar.  You can download all my publications on ResearchGate

Education

Professional education

 

Awards

Awards and Prizes

 

Other

Other

 

Linked news

Monday 22 August 2022
EU-Horizon Europe funding for ACTNOW project
Human activities have created unprecedented, cumulative threats resulting in stunning losses of biodiversity in our oceans. This is leading to well‐documented declines in seafood resources, losses of iconic and culturally valuable habitats, and…
Wednesday 15 June 2022
Myron Peck appointed special professor of Life Cycle Ecophysiology of Marine Animals
The executive board of Wageningen University & Research (WUR) has appointed prof. Dr. Myron Peck as special professor Life Cycle Ecophysiology of Marine Animals. The chair commenced on June 1 and is funded by the Royal Netherlands Institute for Sea…
Tuesday 14 June 2022
Myron Peck presents EU commission on effects of climate change on fish and shellfish stocks
Prof. Myron Peck was invited by the European Commission, Directorate General for Maritime Affairs and Fisheries (DGMARE) to share recent information on the effects of climate change on fish and shellfish stocks. The presentation in Brussels was part…
Monday 28 February 2022
IPPC report on climate adaptation
Today the IPCC published their newest report on climate change and climate adaptation. It analyses the impacts of the climate crisis and how humanity can adapt, in addition to slashing emissions. The good news is that a liveable future remains within…
Tuesday 07 December 2021
’North Sea Transition in Harmony’ connects indispensable stakeholders
For the first time, a trans-disciplinary research programme has been proposed to bring together all sectors with an interest in creating a sustainable legacy for activities in the North Sea. A new ‘Blue Route’ consortium wants to start a long-term…
Tuesday 28 September 2021
European fishing communities face their own specific climate risks
Of all European fisheries and coastal communities, the ones in the UK and the Eastern Mediterranean have the highest risk of being affected by climate change. Marine researchers working in Denmark, the UK and the Netherlands published the outcomes of…
Monday 31 August 2020
Myron Peck joins NIOZ as new Head of Coastal Systems
Dr. Myron Peck joins NIOZ as the new Head of Department for Coastal Systems (COS) from the first of September. Despite these challenging times, Peck is excited to make the transition to NIOZ. ‘NIOZ and COS are world-renown for their research on…

NIOZ publications

  • 2022
    Bils, F.; Aberle, N.; van Damme, C.J.G.; Peck, M.A.; Moyano, M. (2022). Role of protozooplankton in the diet of North Sea autumn spawning herring (Clupea harengus) larvae. Mar. Biol. (Berl.) 169: 90
    Gauger, M.F.W.; Romero-Vivas, E.; Peck, M.A.; Balart, E.F.; Caraveo-Patiño, J. (2022). Seasonal and diel influences on bottlenose dolphin acoustic detection determined by whistles in a coastal lagoon in the southwestern Gulf of California. PeerJ 10: e13246. https://dx.doi.org/10.7717/peerj.13246
    Howald, S.; Moyano, M.; Crespel, A.; Kuchenmüller, L.L.; Cominassi, L.; Claireaux, G.; Peck, M.A.; Mark, F.C. (2022). Effects of ocean acidification over successive generations decrease resilience of larval European sea bass to ocean acidification and warming but juveniles could benefit from higher temperatures in the NE Atlantic. J. Exp. Biol. 225(9). https://dx.doi.org/10.1242/jeb.243802
    Huang, A.T.; Alter, K:; Polte, P.; Peck, M.A. (2022). Disentangling seasonal from maternal effects on egg characteristics in western Baltic spring‐spawning herring Clupea harengus. J. Fish Biol. Early view. https://dx.doi.org/10.1111/jfb.15210
    Read more
    Lima, A.R.A; Baltazar-Soares, M.; Garrido, S.; Riveiro, I.; Carrera, P.; Piecho-Santos, A.M.; Peck, M.A.; Silva, G. (2022). Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 804: 150167. https://dx.doi.org/10.1016/j.scitotenv.2021.150167
    Lima, A.R.A; Garrido, S.; Riveiro, I.; Rodrigues, D.; Angélico, M.M.P.; Gonçalves, E.J.; Peck, M.A.; Silva, G. (2022). Seasonal approach to forecast the suitability of spawning habitats of a temperate small pelagic fish under a high-emission climate change scenario. Front. Mar. Sci. 9: 956654. https://dx.doi.org/10.3389/fmars.2022.956654
    Ruthsatz, K.; Dausmann, K.H.; Peck, M.A.; Glos, J. (2022). Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. Journal of Experimental Zoology. Part A: Ecological and Integrative Physiology 337(5): 477-490. https://dx.doi.org/10.1002/jez.2582
  • 2021
    Hamon, K.G.; Kreiss, C.M.; Pinnegar, J.K.; Bartelings, H.; Batsleer, J.; Catalán, I.A.; Damalas, D.; Poos, J.-J.; Rybicki, S.; Sailley, S.F.; Sgardeli, V.; Peck, M.A. (2021). Future socio-political scenarios for aquatic resources in Europe: an operationalized framework for marine fisheries projections. Front. Mar. Sci. 8: 578516. https://doi.org/10.3389/fmars.2021.578516
    Köpsel, V.; de Moura Kiipper, G.; Peck, M.A. (2021). Stakeholder engagement vs. social distancing—how does the Covid-19 pandemic affect participatory research in EU marine science projects? Marit. Stud. 20: 189-205. https://doi.org/10.1007/s40152-021-00223-4
    Payne, M.R.; Kudahl, M.; Engelhard, G.H.; Peck, M.A.; Pinnegar, J.K. (2021). Climate risk to European fisheries and coastal communities. Proc. Natl. Acad. Sci. U.S.A. 118(40): e2018086118. https://dx.doi.org/10.1073/pnas.2018086118
    Peck, M.A.; Alheit, J.; Bertrand, A.; Catalán, I.A.; Garrido, S.; Moyano, M.; Rykaczewski, R.; Takasuka, A.; Van Der Lingen, C.D. (2021). Small pelagic fish in the new millennium: a bottom-up view of global research effort. Prog. Oceanogr. 191: 102494. https://doi.org/10.1016/j.pocean.2020.102494
    Pinnegar, J.K.; Hamon, K.G.; Kreiss, C.M.; Tabeau, A.; Rybicki, S.; Papathanasopoulou, E.; Engelhard, G.H.; Eddy, T.D.; Peck, M.A. (2021). Future Socio-Political Scenarios for Aquatic Resources in Europe: A Common Framework Based on Shared-Socioeconomic-Pathways (SSPs). Front. Mar. Sci. 7: 568219. https://doi.org/10.3389/fmars.2020.568219
    Rioual, F.; Ofelio, C.; Rosado-Salazar, M.; Dionicio-Acedo, J.; Peck, M.A.; Aguirre-Velarde, A. (2021). Embryonic development and effect of temperature on larval growth of the Peruvian anchovy Engraulis ringens. J. Fish Biol. 99(6): 1804-1821. https://dx.doi.org/10.1111/jfb.14882
  • 2020
    Ruthsatz, K.; Dausmann, K.H.; Paesler, K.; Babos, P.; Sabatino, N.M.; Peck, M.A.; Glos, J. (2020). Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the common frog (Rana temporaria) as a case study. Conservation Physiology 8(1): coaa100. https://doi.org/10.1093/conphys/coaa100

Linked projects

Diet of Gulls
Supervisor
Myron Peck
Funder
Netherlands Organization for Scientific Research - Dynamisering
Project duration
1 Jun 2013 - 31 Dec 2018
SOMBEE
Supervisor
Myron Peck
Funder
Belmont Forum - BiodivERsA
Project duration
1 Sep 2020 - 31 Dec 2022
FutureMARES
Supervisor
Myron Peck
Funder
European Community || Horizon 2020
Project duration
1 Sep 2020 - 31 Aug 2024