Royal Netherlands Institute for Sea Research
Royal Netherlands
Institute for Sea Research
Phone number
+31 (0)113 577 489
Senior Scientist

Dr. Ir. Dick van Oevelen

Senior Scientist

​​​​​Research Interests & Expertise

  • Food webs, going from the deep-sea to shallow estuaries
  • Species interactions
  • Functioning of warm- and cold-water coral reefs
  • Organism physiology
  • Nitrogen cycling
  • Food web modeling and data assimilation
  • Linear inverse modeling
  • Using stable isotopes at natural abundance and tracer level
  • Compound-specific isotope analysis (carbohydrates, fatty acids and amino acids)
  • Aquatic Eddy covariance

Short CV

@work in the blue waters of CuracaoI was recently appointed as senior scientist in the Department of Estuarine and Delta Systems, where I will work on new challenges including the nitrogen cycling in mussel and oyster reefs, reef dynamics and the role of zooplankton in the pelagic food web. In the past years, I have applied inverse models to quantify carbon and nitrogen fluxes in marine food webs going from intertidal mudflats, continental shelves and slopes to the abyssal plains. Many of these studies were done in international collaborations within large EU-projects (e.g. HERMESHERMIONE and CoralFISH. This food web modelling still continues in the deep-sea mining projects MIDAS and "Ecological aspects of deep-sea mining" (JPI-Oceans), in which we try to determine recovery rates of abyssal food webs by combining (historical and novel) field data and modeling. Another prime interest is the functioning of warm- and cold-water coral reefs, which is primarily focussed on the mechanisms that allow these hotspot ecosystems to flourish, including the interaction of hydrodynamics and organic matter transport. Together with my colleagues Prof. dr. Klaas Timmermans and Prof. dr. Tjeerd Bouma, I enjoy teaching the MSc. course Marine Ecosystem Services and Global Change at Groningen University. 


Current Research and Projects


Close up of an oyster reefNitrogen cycling in oyster reefs

Oyster and mussel reefs play a disproportionately large role in organic matter uptake in estuaries due to their high filtration capacity. Yet, the consequences for carbon and in particular nitrogen cycling remain poorly understood. Using a combination of field and laboratory studies using 15N-labelled substrates (NH4 and NO3) we aim to get grip on the nitrogen cycle associated with oyster reefs.



Cold-water coral reef in a Norwegian fjordSurviving in a Deep-Sea Desert - Uncovering the Functioning of Cold Water Coral Reefs in the Deep Ocean

The deep sea harbours one of the most biodiverse ecosystems on our planet: cold-water coral reefs. Like their tropical counterparts, they  form structurally complex habitats that support a diverse community. It is still paradoxical how such a rich ecosystem can thrive in an environment that is considered to be food limited. In the EU-project ATLAS and my NWO-VIDI project we target this paradox by an integrated study on the delivery, uptake and processing of organic matter by cold-water coral reef communities.


A sea cucumber (±15 cm) next to mineral-rich manganese nodules. ©AWIEcological impacts of seabed mining

The deep seafloor is rich in mineral resources that are a target for the mining industry in the near future. These mining operations will generate large scale disturbances at the seafloor with unknown consequences and potentially slow recovery. Within several international projects, we investigate how food web functions are altered using in situ experimentation and food web modeling.



Below a few links to items that have made it to the media on my work:

  • Launch of the ATLAS project featured on the BBC
  • Documentary on the sponge loop by the VPRO
  • Item "Koudwaterkoralen vormen een luilekkerland" op Vroege Vogels
  • Item "Knollen in de diepzee" op Vroege Vogels
  • Item "Mijnbouw onder water funest voor zeeleven" in het Reformatorisch Dagblad 



Find all my publications, including downloadable PDFs, at ResearchGate. Below, I highlight some personal favorites.

Soetaert K, Mohn C, Rengstorf A, Grehan A and Van Oevelen (2016) Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Scientific Reports 6:35057  full text

Cold-water corals (CWCs) form large mounds on the sea oor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced strati cation and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.


Cathalot C, Van Oevelen D, Cox TJS, Kutti T, Lavaleye M, Duineveld G and Meysman FJR (2015) Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Frontier in Marine Science 2: full text

Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on energy flow and organic carbon utilization are critically lacking. Here we report in situ community respiration rates for cold-water coral and sponge ecosystems obtained by the non-invasive aquatic Eddy Correlation technique. Oxygen uptake rates over coral reefs and adjacent sponge grounds in the Træna Coral Field (Norway) were 9–20 times higher than those of the surrounding soft sediments. These high respiration rates indicate strong organic matter consumption, and hence suggest a local focusing onto these ecosystems of the downward flux of organic matter that is exported from the surface ocean. Overall, our results show that coral reefs and adjacent sponge grounds are hotspots of carbon processing in the food-limited deep ocean, and that these deep-sea ecosystems play a more prominent role in marine biogeochemical cycles than previously recognized.


De Goeij JM, D Van Oevelen, MJA Vermeij, R Osinga R, JJ Middelburg, AFPM de Goeij, and W Admiraal (2013) Surviving in a Marine Desert: The Sponge Loop Retains Resources within Coral Reefs. Science 342(6154): 108-110. full text 

Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna. This “sponge loop” was confirmed in aquarium and in situ food web experiments, using 13C- and 15N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as coral reefs persist in oligotrophic seas—the reef’s paradox—and has implications for reef ecosystem functioning and conservation strategies.


Mueller, CE, T Lundalv, JJ Middelburg, and D van Oevelen (2013) The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. Plos One 8:e58660-e58660. full text

The cold-water coral L. pertusa and the polychaete E. norvegica live together in close association. In this paper we show that the association is beneficial for both species involved. Calcification by the coral is enhanced, which increases reef strength and the worm takes up more food. The high worm abundance suggests that this symbiosis has implications for the ecosystem scale. 


Van Oevelen D, K Soetaert, CHR Heip. (2012) Carbon flows in the benthic food web of the Porcupine Abyssal Plain: The (un)importance of labile detritus in supporting microbial and faunal carbon demands. Limnology and Oceanography 7(2): 645–664 full text

Pulses of fresh phytodetritus arriving on the deep seafloor are considered an important food source for organisms living there. Here we merged various data sources from the Porcupine Abyssal Plain (4800 m) and arrive at the conclusion that these fresh pulses are not very important in the diets. Instead, the biota still relies largely on detritus already present in the sediment.


Van Oevelen D, GCA Duineveld, MSS Lavaleye, F Mienis, K Soetaert and CHR Heip (2009) The cold-water coral community as hotspot of carbon cycling on continental margins: a food web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceanography 54:1829–1844 full text

Cold-water corals form large carbonate reef structures on the seafloor, that become home to a associated fauna. We knew that this is a diverse faunal community. In this paper, we show for the first time that the biomass and carbon processing acitivity is substantially higher than that of the surrounding sediments. We speculate that this high activity has implications for the surrounding sediments. 


Van Oevelen D, K Van den Meersche, F Meysman, K Soetaert, JJ Middelburg and AF Vézina (2010) Quantitative reconstruction of food webs using linear inverse models. Ecosystems 13:32–45 full text

The food web is a cornerstone concept in modern ecology as it describes the exchange of matter among different compartments within an ecosystem. In this paper, we describe a modeling technique to construct a mass-balanced food web model based on all available data. 


Van Oevelen D, JJ Middelburg, K Soetaert and L Moodley (2006) The fate of bacterial carbon in an intertidal sediment: Modeling an in situ isotope tracer experiment. Limnology and Oceanography 51:1302-1314 full text 

Biogeochemical cycling in most sediments is dominated by heterotrophic bacteria, yet we understand very little of the factors that control bacterial biomass. A this study, we used intepretated data from an stable isotope tracer data with a model experiment and concluded that grazing by fauna represents only a minor fate, instead mortality (e.g. viral lysis) seemed to be the dominant fate of bacterial carbon production.

Linked news

Tuesday 29 October 2019
Largest mapping of breathing ocean floor key to understanding global carbon cycle
Marine sediments play a crucial role in the global carbon cycle due to the oxygen consumption and CO2 respiration of the organisms that live in and on the ocean floor. To help predict the changing contribution of this respiration to the carbon cycle…
Thursday 27 September 2018
Diepzeemijnbouw veroorzaakt langdurige schade aan het ecosysteem
[English below Dutch] Het winnen van mangaanknollen in de diepzee levert langdurige milieuschade op. Dat concludeert NIOZ-onderzoekster Tanja Stratmann in haar proefschrift 'Benthic ecosystem response to polymetallic nodule extraction in the deep…
Tuesday 06 June 2017
Short-term effects of deep-sea mining waste on microbes and meiofauna at the seafloor
The addition of waste particles from deep-sea mining (iron ore mine tailings) affected the activity of nematodes and the microbial community in microcosm experiments with natural sediments collected at 200m depth in the Hardanger fjord (Norway).…
Friday 02 December 2016
Good things come from above for deep-sea coral reefs
Deep-sea coral reefs grow in the oceans at great depths in the dark. They can be found around the peaks of limestone mounds rising from the seafloor up to hundreds of meters. The corals produce these limestone mounds themselves: they consist of dead…

Linked blogs

Tuesday 02 October 2018
NIOZ@SEA | Ecologisch onderzoek in de Nederlandse delta’s
De ecosystemen in de Oosterschelde, Grevelingen en Haringvliet zijn aan het veranderen door de invloed van onze Deltawerken, maar ook door klimaatverandering. In de Oosterschelde verdrinken de zandplaten langzaam door zandhonger, de bodem in het…
Sunday 07 May 2017
NIOZ@Sea: Rockall Bank Expedition
Surviving in a Deep-Sea Desert – Uncovering the Functioning of Cold-Water Coral Reefs in the Deep Ocean

NIOZ publications

Linked projects

MIDAS_Managing Impacts of Deep-seA reSource exploitation
Dick van Oevelen
European Community
Project duration
1 Nov 2013 - 16 Feb 2018
MIDAS_Managing Impacts of Deep-seA reSource exploitation
Dick van Oevelen
European Community
Project duration
1 Nov 2013 - 16 Feb 2018
NWO-VIDI Surviving in a Deep-Sea Desert - Uncovering the Functioning of Cold-Water Coral Reefs in the Deep Ocean
Dick van Oevelen
Netherlands Organization for Scientific Research
Project duration
1 Jul 2014 - 30 Jun 2019