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Abstract Mudflats are not only home to large numbers of bivalves, polychaetes,
crustaceans, fish and birds, but also to diverse communities of parasites. In this
chapter, we illustrate and explore how the resulting parasite-host interactions can
affect host populations, communities and food webs in mudflat ecosystems, equal-
ling in importance the effects resulting from other species interactions, such as
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predation and competition. We first give an overview of the distribution and ecology
of typical parasites occurring in mudflat ecosystems. Then we illustrate the main
abiotic and biotic drivers of parasite infection levels in mudflat hosts. Following this,
we conceptualise and illustrate the many direct and indirect effects of parasite-host
interactions on host populations, communities and food webs in mudflat ecosystems.
Finally, we highlight the potential impact of ongoing global changes such as
increasing temperature and species introductions on parasite-host interactions in
mudflat ecosystems. With this condensed overview of the presence and ecological
role of parasites in mudflat ecosystems, we hope to increase the appreciation of the
manifold ecological effects of parasite-host interactions on host populations, com-
munities and food webs of mudflat ecosystems, and to spark further research in this
field.

1 Parasites as Protagonists on Mudflat Ecosystems

1.1 Parasites and Biological Interactions

Species interactions such as competition and predation are well known drivers of the
population dynamics and community structure of organisms inhabiting mudflats.
While competition is mainly limited to high-density situations (Wilson 1991; Jensen
1993; Raffaelli and Hawkins 1999), predation by typical mudflat predators such as
crabs, fish and birds seems to be a universal biotic structuring factor on mudflats
(Reise 1985; Wilson 1991; Kaiser et al. 2011, see Chaps. 5, 6, 12). Although the
power of species interactions in shaping mudflat community structure and dynamics
is generally acknowledged, other species interactions have received much less
attention in this respect. Among these are parasitic interactions, i.e. interactions
between parasites and their hosts. In this type of interaction, one partner (the
parasite) gains a benefit while the other (the host) suffers from negative effects.
The benefit is usually a trophic one as parasites feed on their hosts’ tissue or
pre-digested gut content. The negative effects for hosts can be manifold and range
from various sub-lethal effects to mortality.

With their positive-negative dichotomy, parasite-host interactions resemble
predator-prey interactions in which the predator gains a benefit and the prey suffers
from a negative effect in the interaction (Raffel et al. 2008; Lafferty and Kuris 2002).
However, predators differ from parasites in respect to size (predators are usually
larger than their prey while parasites are usually smaller) and the number of victims
attacked (predators typically attack more than one victim over their life cycle, while
parasites usually attack only a single victim per life-cycle stage; Lafferty and Kuris
2002). Under this definition, blood-sucking animals such as mosquitos, leeches or
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lampreys are considered to be micropredators as they feed on more than a single
victim during a life cycle stage (Lafferty and Kuris 2002). However, broader
definitions of parasitism would subsume them under parasites (Combes 2001).
Further definitional distinctions into sub-categories of the term ‘parasite’ exist.
Based on the impact on their hosts, some authors have suggested that typical para-
sites such as helminths feed on a single host without necessarily killing it while for
parasitoids the killing of the host is an inevitable part of the life cycle (Lafferty and
Kuris 2002). Finally, parasites are often divided into two groups, microparasites and
macroparasites, which, apart from size, are distinguished by their reproductive dyna-
mics: the descendants of microparasites (e.g. protozoans such as Toxoplasma and
Plasmodium spp.) may continue to infect the host, as well as being transmitted to
other hosts, whereas the descendants of macroparasites (usually successive larval
stages, e.g. trematodes) leave the host to infect other hosts (Schmid-Hempel 2011).
Although many microparasites may undoubtedly have strong effects on infected
hosts in mudflat ecosystems, we will focus on macroparasites in this chapter, as their
ecology and impacts on mudflat ecosystems are much better understood. We will
also mainly focus on describing the distribution and various ecological effects of
parasites on ‘wild’ hosts in mudflat ecosystems and thus exclude more applied issues
of diseases in aquaculture settings such as mussel, oyster or shrimp culture in
mudflat ecosystems. In general, we do not intend to provide an exhaustive review
of the topic but instead we aim to sketch the broader picture and highlight some
active current and future research fields.

1.2 Parasites Occurring in Mudflat Ecosystems

Mudflat ecosystems harbour a large variety of parasites (Fig. 9.1). Recent studies
that include parasites in food web analyses give an idea about the typical compo-
sition of parasite communities in mudflat ecosystems (Table 9.1). These parasite-
inclusive food webs do not cover all types of mudflats, but showcase a sub-set of
mudflat ecosystems such as mudflats in estuarine salt marshes (Carpinteria, Bahia
Falsa, Estero de Punta Banda) and shallow water ecosystems (Flensburg Fjord),
mudflats behind back-barrier islands (Sylt tidal basin) and in large tidal inlets (Otago
Harbour). The dominant parasite group in these mudflat ecosystems are trematodes,
followed by other helminths such as nematodes, cestodes and acanthocephalans, and
a variety of other parasitic groups (Table 9.1). The various parasite species in these
food webs constitute between 16 and 76% of the richness of free-living (host)
species, indicating that parasites contribute significantly to the biodiversity of
mudflat ecosystems.

Although the parasite inventories from these six mudflat food webs give an idea
about the general composition of parasite communities in mudflat ecosystems, they
are far from being complete, since some host groups such as birds are notoriously
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understudied. Further complications arise from the fact that some host groups
(e.g. fish and birds) are often transient components of the local food web that carry
parasites acquired elsewhere, and therefore do not necessarily cycle within the local
web. In addition, parasite-inclusive food web studies have so far mainly considered
macroparasites; however, there is most likely also a large diversity of microparasites
in mudflat ecosystems that awaits exploration (Thieltges et al. 2013a). Hence, the
presently known diversity of parasites in mudflat ecosystems is likely to increase
with future research efforts.

Fig. 9.1 Examples of metazoan parasites occurring in invertebrate hosts living on mudflats. (a)
Free-living cercarial stage of the trematodeMaritrema subdolum (length including tail ca. 340 μm);
(b) cystacanth stage (with everted proboscis) of the acanthocephalan Plagiorhynchus allisonae
(trunk length ca. 2.5 mm) from the amphipod Transorchestia chiliensis; (c) sac-like externa of the
rhizocephalan barnacle Sacculina carcini underneath the pleon of an infected shorecrab Carcinus
maenas (ca. 6 cm carapax width); (d) metacercarial stages of the trematode Acanthoparyphium
sp. (380–470 μm diameter), encysted in the foot tissue of the New Zealand cockle Austrovenus
stutchburyi; (e) pea crabs Pinnotheres novaezelandiae (ca. 8–16 mm carapax width) collected from
inside green-lipped mussels Perna canaliculus; (f) white mesh-like structure of the sporocyst stages
of the trematode Prosorhynchus squamatus infecting the gonads and hepatopancreas of a blue
musselMytilus edulis (ca. 4 cm shell length) (Published with kind permission of (a), (c), (e):© Kim
N. Mouritsen 2018; (b) © Bronwen Presswell 2018; (d) © Tommy Leung 2018; (f) © Tabea
Stier 2018. All Rights Reserved).
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1.3 Parasite Life Cycles

A common feature of many parasites occurring in mudflat ecosystems are their
complex life cycles, i.e. they sequentially infect several different host species over
their life cycle. For example, the dominant trematodes typically have a three-host life
cycle (Figs. 9.1 and 9.2; Galaktionov and Dobrovolskij 2003). Fish, birds or marine
mammals, depending on the trematode species, serve as definitive hosts of the adult
stages of the parasites. Here, the parasites reproduce sexually and release eggs that
leave the host via its faeces. From the eggs, ciliated larvae called miracidia hatch and
infect a first intermediate host, which is usually a gastropod and sometimes a bivalve.
In the first intermediate host, clonal reproduction by asexually reproducing
intramolluscan stages (sporocysts and rediae) leads to the production of a second

Table 9.1 Composition of parasite communities in six functionally different mudflat ecosystems
based on parasite richness of typical taxonomic groups

Sylt
Tidal
Basin

Otago
Harbour Flensburg

Carpinteria
Salt Marsh

Bahia
Falsa

Estero de
Punta Banda

Total host
richness

116 117 60 92 101 123

Invertebrates 66 93 48 39 47 59

Fish 21 7 12 11 13 19

Birds 29 17 8 42 41 45

Total parasite
richness

35 19 46 60 53 76

Trematodes 27 13 27 30 34 39

Nematodes 1 2 10 5 4 7

Cestodes 1 3 6 4 8

Acanthocephalans 1 2 2 2 2 4

Monogeneans 1 1 2

Crustaceans 4 2 1 4 3 4

Rhabdocoelans 1 1

Myxozoans 1

Nemerteans 1 1

Microsporidians 1

Protists 2 7 5 9

Viruses 1 1

Parasitic plants 2

For comparison, total species richness of free-living (metazoan) host species and of major taxo-
nomic groups are also given for each food web (excluding basal groups and bacteria, zooplankton
and meiofauna). Data based on Hechinger et al. (2011), Mouritsen et al. (2011), Thieltges et al.
(2011), and Zander et al. (2011)
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free-living stage, the cercariae, which are released into the environment in large
numbers. After a short free-living dispersal period of usually less than 24 h, the
cercariae infect a second intermediate host, an invertebrate or fish, depending on the
trematode species. Here, most cercariae encyst as metacercariae, and await ingestion
of the second intermediate host by a definitive host, before closing the life cycle via
trophic transmission. While the standard trematode life cycle consists of three
consecutive hosts, variations on the theme exist, with abbreviations as well as
extensions of the life cycle (Poulin and Cribb 2002; Galaktionov and Dobrovolskij
2003). Complex life cycles, including the use of one or several intermediate hosts,
and a definitive host, also exist in other types of marine parasites such as nematodes,
cestodes and acanthocephalans (see Rhode 1993, 2005). The existence of this com-
plexity of life cycles is puzzling and their selective benefits are still debated;
increased transmission and survival are, among other benefits, thought to underlie
the evolution of these complex life cycles (Poulin 2007).

Although complex life cycles prevail in mudflat ecosystems, there are also
parasites that have simple life cycles in which a free-living infective stage released
from infected hosts infects another host individual of the same species. For example,
the rhizocephalan parasite Sacculina carcini infects shore crabs Carcinus maenas, in
which it grows internally and develops a visible external sac-like structure below the
abdomen of the host (the so-called externa), from which infective stages are released
and infect a new crab host (Figs. 9.1 and 9.2; Høeg 1995; Høeg and Lützen 1995).

a) Complex life cycle
Trematodes Rhizocephalans

Simple life cycleb)

Fig. 9.2 Examples of typical life cycles of parasites occurring on mudflats. (a) Complex life cycle
of a trematode parasite, including three sequential host species (one definitive host and two
intermediate hosts). Host specificity is usually highest in 1st intermediate hosts and lower in 2nd
intermediate and definitive hosts. Transmission occurs via a free-living infective stage or via trophic
transmission when definitive hosts consume infected prey. (b) Simple life cycle of rhizocephalan
parasites (e.g. Sacculina carcini) infecting other crabs horizontally via a free-living infective stage,
released by infected crabs (Published with kind permission of © David Thieltges 2018. All Rights
Reserved).
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Other marine parasites with simple life cycles are shell-boring polychaetes such as
Polydora ciliata, or monogenean flatworms infecting fish (Buschbaum et al. 2007;
Rhode 2005).

1.4 Hosts Affected in Mudflat Ecosystems

Due to the complex life cycles of many parasites, a single parasite species usually
affects several very different host taxa during its life, ranging from invertebrates to
vertebrates. In addition, if host specificity is low, the same parasite species can infect
several different host species at a given life cycle stage. Overall, this results in most
free-living species inhabiting mudflats being infected by at least one parasite species.
However, not all of these free-living species will serve as hosts to parasites to the
same degree, due to host specificity issues or other ecological processes. For
example, at the host species level, the mean number of trematode species that can
be found in populations of snail first intermediate hosts in mudflat ecosystems varies
widely among host species from 1 to 12.7 (Poulin and Mouritsen 2003). There may
also be gastropod species that do not serve as hosts for trematodes at all
(Pechenik et al. 2001). Likewise, the mean infection prevalence (the proportion of
hosts infected) of the same trematodes in populations of gastropods varies widely
among gastropod host species (Poulin and Mouritsen 2003), indicating varying
general suitability as hosts among gastropod species.

The same pattern can also be observed within single mudflat ecosystems. For
example, the number of parasite species infecting gastropods and bivalves varies
widely among host species in a back-barrier islands mudflat ecosystem in German/
Danish coastal waters (Fig. 9.3a). Similarly, the number of parasite species infecting
crustaceans in a large tidal inlet in New Zealand varies among host species
(Fig. 9.3b). In addition, the mean infection intensity (no. of parasites per infected
host) of individual parasite species also differs strongly among and within host
species (Fig. 9.3b), indicating that not all hosts are evenly suitable to all parasite
species. In general, this suggests that some host species will be more likely to be
affected by specific parasite species than others. In addition to among-host species
differences in parasite richness and infection levels, there is often also considerable
within-host species variation, since the spatial heterogeneity of infections is fre-
quently high in hosts inhabiting mudflats, even within the same mudflat ecosystem
(e.g. Hechinger and Lafferty 2005; Fredensborg et al. 2006; Thieltges and Reise
2007). This heterogeneity extends to even smaller scales, as not all individuals of the
same host species in the same locality will be equally infected, leading to the almost
universal phenomenon of parasite aggregation among hosts, generally observed in
parasite-host interactions (Shaw and Dobson 1995). This suggests that not only
different host species will be affected by parasitism to a different degree, but also that
single host individuals may experience very different exposure to parasites,
depending on the locality and other factors. We further discuss some of the under-
lying mechanisms below.
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While the general degree to which molluscs and crustaceans are affected by
parasites in mudflat ecosystems is relatively well known (Lauckner 1980, 1983;
Poulin and Mouritsen 2003; Thieltges et al. 2009a, b, c), we know much less about
parasite infection levels in other host groups. Polychaetes are one of the dominant
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Fig. 9.3 Examples of parasite richness and infection intensities among typical host groups
inhabiting mudflat ecosystems. (a) Parasite richness of different groups of parasites (shell boring
polychaetes, intestinal copepods, nematodes and turbellarians, and trematodes in their first or
second intermediate host life cycle stages) in gastropods and bivalves from a back-barrier island
mudflat ecosystem in German/Danish coastal waters (Thieltges et al. 2006). (b) Mean infection
intensity (no. of parasites per infected hosts) of four parasite taxa (two trematodes: Maritrema
novaezealandensis andMicrophallus sp., one acanthocephalan species group: Profilicollis spp. and
one nematode: Ascarophis sp.) infecting crustaceans of different taxa in a large tidal inlet in
New Zealand (Koehler and Poulin 2010). Redrawn from Thieltges et al. (2006) and Koehler and
Poulin (2010).
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taxa on mudflats, but have not been studied intensively with respect to parasites.
They are known to serve as intermediate hosts, not only for trematodes, but also for
nematodes and cestodes (see Peoples 2013 for a recent review); however, little is
known about infection levels of polychaetes in mudflat ecosystems (but see Peoples
et al. 2012). Fish inhabiting mudflats serve as intermediate and definitive hosts for
parasites with complex life cycles such as trematodes and other helminths, which are
acquired via trophic transmission from intermediate hosts (Thieltges and Poulin
2016). Although the parasitology of marine fishes is relatively well known, the
specific parasite communities and infection intensities of fishes inhabiting mudflats
are less well studied, apart from scattered reports on specific fish host or parasite
species (e.g. Groenewold et al. 1996), and from a very limited number of broader
studies on entire mudflat ecosystems such as Californian estuarine salt marshes
(Kuris et al. 2008). This results from the fact that fish parasitological studies usually
focus on offshore or deeper coastal waters, and rather on commercially than eco-
logically relevant species. In addition, it can be difficult to link parasites found in fish
with specific habitats, because many coastal fish species often only occur tem-
porarily on mudflats (Horn et al. 1999). Hence, besides being infected with parasites
locally acquired via trophic transmission, fish hosts caught on mudflats will also
harbour other parasites such as parasitic copepods (e.g. Koch et al. 2014) that they
acquired elsewhere, which complicates linking parasites to specific mudflat habitats.
Finally, the least-studied host group with respect to parasites (mainly due to ethical
constraints in conducting invasive parasitological surveys) are birds, which use
mudflats mainly as feeding grounds (Chap. 12). They serve as definitive hosts to
the majority of trematode parasites occurring in mudflat ecosystems, and they
acquire them via trophic transmission (Thieltges and Poulin 2016). However, little
is known about the actual infection levels in birds in specific mudflat ecosystems,
apart from local studies on single host and/or parasite species (e.g. Latham and
Poulin 2002; Kuris et al. 2008). In addition, like fish, most birds also use mudflats
only temporarily, e.g. at stop-overs during their annual migrations, so that their
parasite faunas are likely to be composed of parasite species acquired in different
habitats (Gutiérrez et al. 2017).

2 Drivers of Infection Levels

2.1 Biotic Factors

Because parasites, by the nature of their life style, depend on their hosts for a living,
the presence of parasites depends on the presence of their hosts. Hence, host
diversity and abundance usually drive parasite richness and infection levels. This
relationship can be observed on large regional, as well as on small local spatial
scales. For example, the diversity and prevalence of trematodes infecting a common
gastropod species (serving as first intermediate host) which inhabits mudflats
depends on the presence and abundance of bird definitive hosts (which are the

9 Ecology of Parasites in Mudflat Ecosystems 221

https://doi.org/10.1007/978-3-319-99194-8_12


upstream hosts in the parasites’ life cycles) on regional scales (Fredensborg et al.
2006). Likewise, the same relationship can also be observed on small local spatial
scales such as in intertidal mud channels and pans within a single estuarine salt
marsh ecosystem (Hechinger and Lafferty 2005). Similar relationships have also
been observed in second intermediate hosts of trematodes. For example, the infec-
tion intensity of metacercarial stages of trematodes in cockles (Cerastoderma edule),
which serve as second intermediate hosts for the parasites, is positively correlated
with the abundance of snail first intermediate hosts in the field (Thieltges and Reise
2007), and with densities of infected snails in field experimental settings (Thieltges
2007).

It is not just the upstream hosts in the complex life cycles of parasites, but also the
receiving hosts themselves which can affect parasite richness and infection inten-
sities. Host body size is a host trait that is generally positively correlated with both
parasite diversity and infection intensity, as larger hosts provide more space and
niches for parasites (Poulin 2007; Kamiya et al. 2014). In addition, larger hosts are
also often older hosts, and may thus have accumulated parasite infections over a
longer exposure period, resulting in higher infection levels in larger and older host
individuals. In some cases, the effect of age or exposure time may be a stronger
factor than host body size. For example, experimental exposure of cockles
(Cerastoderma edule) of different body size, showed that exposure time was a
much stronger determinant of trematode infection levels than body size (Thieltges
2008). Host body size can also be important in cases where it co-varies with the
general infection suitability of the host. For example, trematodes that use gastropods
as first intermediate hosts mainly infect mature snails, since they depend on the
gonadal tissue of the snails (Galaktionov and Dobrovolskij 2003). This results in
infection thresholds in snails, with small juvenile snails usually being uninfected,
and thus produces a typical skewed size-class distribution of infections in gastropod
hosts (see e.g. review by Lauckner 1980). Besides the traits of individual hosts, it can
also be the density of all conspecific hosts at a specific location that can affect
parasite infection levels. Usually, parasite infection intensities and host density are
positively correlated, as a result of basic epidemiological mechanisms (Poulin 2007;
Kamiya et al. 2014). However, in mudflat ecosystems, host density can also have a
negative effect on infection intensities of individual hosts, in cases where free-living
infective stages are diluted by conspecific downstream hosts. This can, for example,
be observed in second intermediate hosts of trematodes where high densities of hosts
lead to lower infection intensities in individual hosts in field observational and
experimental settings (Mouritsen et al. 2003; Thieltges and Reise 2007).

Besides the upstream hosts and the hosts themselves, organisms that do not serve
as hosts can also affect parasite infection levels. At first sight, this sounds counter-
intuitive, but there are various ways by which non-hosts can affect parasite infection
levels. A particularly well-studied mechanism in this respect is the interference of
non-hosts with the transmission of infective stages of parasites (Thieltges et al.
2008a; Johnson and Thieltges 2010). For example, many organisms inhabiting
mudflats are capable of interfering with the transmission of the free-living infective
cercarial stages of trematodes, either by preying on cercariae (e.g. crabs, shrimps,
amphipods, anemones, bivalves) or by constituting a physical obstacle such as algae
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(Thieltges et al. 2008b; Hopper et al. 2008; Welsh et al. 2014). This transmission
interference does not only reduce the number of infective stages in the environment,
but also leads to reduced infection intensities in the downstream hosts in experi-
mental settings (Thieltges et al. 2008b, 2009d). Such a transmission interference by
non-hosts may be common in mudflat ecosystems, as recent food web studies using
parasite-inclusive webs indicate that predation on free-living infective stages
accounts for 10–20% of the total number of trophic links in the six food webs
mentioned above (Table 9.1; Thieltges et al. 2013b).

2.2 Abiotic Factors

Infection levels in mudflat hosts are further mediated by a variety of abiotic factors.
They affect both parasites and hosts, as well as their interactions, often resulting in
complex net effects of environmental drivers on infection levels. Best studied in this
respect is the effect of temperature on trematode infections in second intermediate
hosts, such as bivalves and crustaceans, which are infected via free-living cercarial
stages released from first intermediate gastropod hosts (Fig. 9.4). The production and
release of cercarial stages is generally strongly positively correlated with temper-
ature (Poulin 2006), a pattern also commonly observed in parasites occurring on
mud flats (e.g. Mouritsen 2002a; Thieltges and Rick 2006; Studer et al. 2010; see
also Chap. 15). At the same time, infectivity of cercariae (i.e. the successful infection
of the down-stream second intermediate host) increases with temperature, while the
longevity of cercarial stages decreases (e.g. Thieltges and Rick 2006; Studer et al.
2010). Temperature can also influence infection levels of host species, e.g. by
stressing hosts and compromising immunity and thus increasing susceptibility, or
by increasing parasite-induced host mortality (Lafferty et al. 2004; Harvell et al.
2009). Finally, temperature may also affect the development and survival of para-
sites in their second intermediate hosts, potentially compromising future infectivity
with respect to the definitive hosts.

Potentially, temperature can have very different effects at different stages of
parasite transmission. This is illustrated by a study from Studer et al. (2010) on
temperature effects on the transmission of the trematode Maritrema novaezealand-
ensis from its first intermediate host, the mud snail Zeacumantus subcarinatus, to its
second intermediate host, the amphipod Paracalliope novizealandiae (Fig. 9.4). A
series of laboratory experiments that decomposed the different transmission stages,
showed that parasite transmission and host mortality were very slight at low tem-
peratures (<20 �C), while at intermediate temperatures (20–25 �C), parasite trans-
mission peaked, and amphipod hosts showed increased mortality. Finally, at the
highest temperatures (�30 �C), amphipod mortality was very high while parasite
transmission was strongly reduced, due to both low numbers of infective stages
being released, and low infectivity. Hence, temperature had very different effects on
the different stages of the infection process, and the second intermediate amphipod
host turned out to be the particularly vulnerable part. Similar complex temperature
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effects probably exist in other parasite-host systems on mudflats (and elsewhere),
but this largely remains to be studied.

Independent of temperature, the presence of water is of high importance for the
dispersal of the free-living infective stages of trematodes. Hence, on mudflats trans-
mission will generally take place only during high tide, or in the residual water of
pools and puddles remaining at low tide. Such small water bodies probably serve as
hotspots for infections, since they may warm up considerably during low tide in the
summer, and trigger the temperature-induced mechanisms discussed above
(Studer and Poulin 2012). The resulting positive effect on transmission is exempli-
fied by experimental observations that cockles (Cerastoderma edule) exposed over
several months in shallow tidal pools on a mudflat in the German Wadden Sea
showed 43–73% higher infection intensities with trematode metacercarial stages,
compared to cockles exposed outside the pools (Thieltges and Reise 2007).

In addition to the presence of water, the chemical properties of water can affect
parasite transmission. Waterbody salinity is known to vary considerably on mudflats
due to riverine freshwater input, surface runoff, or rainfall. Experimental studies in

T Parasite
Production

Parasite
Survival

Parasite
Infectivity

Host
Susceptibility

Host
Survival

Parasite
Development

16°C + +++ + + +++ +
20°C ++ ++ ++ + ++ ++
25°C +++ ++ +++ + ++ +++
30°C ++ + ++ + - -
34°C + + + - -

Fig. 9.4 Conceptual illustration of the effect of temperature on different stages in the transmission
process of a trematode species from its first intermediate gastropod host over the free-living
cercarial stages to the second intermediate host and subsequent parasite development in the host.
The table shows the direction and strength of temperature (T) effects on the different stages of the
transmission process in laboratory experiments with the trematode Maritrema novaezealandensis,
which uses the mud snail Zeacumantus subcarinatus as its first and the amphipod Paracalliope
novizealandiae as its second intermediate hosts. Data based on Studer et al. (2010). (Published with
kind permission of © David Thieltges 2018. All Rights Reserved).
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New Zealand with the trematode Philophthalmus sp., which uses the snail Zea-
cumantus subcarinatus as first intermediate host, showed that cercarial production,
encystment success (the parasite has a resting stage in the environment), and the
survival of cysts were reduced under long-term (6–12 weeks) exposure to lower
salinities of 25 or 30 psu, compared to the normal salinity of 35 psu (Lei and Poulin
2011). Such effects of salinity on trematode transmission may further be mediated by
temperature. For example, Mouritsen (2002a) reported that salinity effects in the
trematode Maritrema subdolum, which infects the mud snail Hydrobia ulvae, only
occurred at certain temperatures in short-term (12 h) exposure experiments.

Another chemical property of water that can affect parasite transmission in
mudflat ecosystems is the pH of the water, a property that has gained increasing
interest in the contest of the expected future ocean acidification (MacLeod and
Poulin 2012, see also below), but that can also vary considerably in the coastal
waters of today (Melzner et al. 2013). Experimental studies with the trematode
Martitrema novaezealandense have shown that cercarial survival decreases with
decreasing pH of the seawater medium (MacLeod and Poulin 2015). However, the
infection success in second intermediate amphipod hosts (Paracalliope novi-
zealandiae) is actually highest under low pH conditions, which may result from
negative effects of low pH on the hosts, leading to increased susceptibility (Harland
et al. 2015). These examples show that we are far from understanding the full range
of effects of biotic and abiotic drivers on parasite infections levels in hosts inhabiting
mudflats. However, they illustrate that these effects may often differ between
different stages of the transmission process, and also between parasites and hosts,
and that the different biotic and abiotic drivers may often interact.

2.3 Large-Scale Drivers and Biogeography

Some of the biotic and abiotic factors discussed above also act on larger spatial
scales and shape biographical patterns of parasites inhabiting mudflats. Like on
smaller spatial scales, the presence and abundance of hosts is pivotal for the
existence of parasites on large biogeographical scales, as illustrated by a study that
investigated metacercarial trematode infections in the New Zealand cockle Austro-
venus stutchburyi along the entire coastline of New Zealand (Studer et al. 2013b).
The prevalence of parasites in the first intermediate host at the respective sampling
sites proved to be the strongest determinant of infection intensities, besides the
size of the cockle’s foot (the parasites encyst mainly in the foot tissue).

Temperature is also expected to drive large-scale distributional patterns of para-
sites, resulting in latitudinal gradients in parasite species richness and infection
intensity (Kamiya et al. 2014). Given the strong effects of temperature on trematode
transmission, onewould expect higher infection levels at higher average temperatures
occurring at lower latitudes. However, this pattern may actually not be very strong in
hosts inhabiting mudflat ecosystems. For example, Studer et al. (2013b) did not find a
significant latitudinal gradient in trematode infection intensity in the New Zealand
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cockle Austrovenus stutchburyi along the coast of New Zealand, although there was a
strong seawater temperature gradient from the North to the South. Large-scale
patterns in parasite richness also do not universally follow the expectation. For
example, when aggregating local host population data into larger geographical
regions, Galaktionov (2017) found a decrease in trematode richness with increasing
latitude in gastropod hosts (Littorina spp. andHydrobia spp.). However, on the scale
of local host populations, Thieltges et al. (2009a) did not find a latitudinal gradient in
trematode infections ofmud snailsHydrobia ulvae along the European Atlantic coast,
nor did they find any robust latitudinal gradient in the infection prevalence of
periwinkles Littorina littorea. Other studies have even reported latitudinal patterns
opposite to the expectation. For example, Torchin et al. (2015) found that trematode
species richness and prevalence actually increased with latitude in the Pacific horn
snailCerithideopsis californica and the Atlantic horn snailCerithideopsis pliculosala
along the coasts of North and Central America. These examples suggest that infection
levels in individual hosts are more strongly affected by local factors, such as those
emphasised above, than by large-scale temperature gradients.

This rule of thumb may also be true for latitudinal gradients involving across-
species comparisons, i.e. studies based on data of parasite richness and infection
intensity from different host species. In this case, latitude is not only a correlate for
temperature but also serves as a general proxy for evolutionary rates which are
considered to be higher at lower latitude due to increased solar influx (Willig et al.
2003; Turner et al. 1987; Cardillo 1999). Based on this, one would expect not only
higher infection intensities, but also higher parasite species richness at lower lati-
tudes. Indeed, in some cases, this pattern has been observed. For example, trematode
species richness, mean prevalence, and mean intensity in marine amphipod hosts
decrease with increasing latitude (Thieltges et al. 2009c). However, other across-
species comparisons have failed to find such a latitudinal pattern. For example,
Poulin and Mouritsen (2003) did not detect an effect of latitude across gastropod
host species (but they found an effect at the sample level, i.e. when individual
samples from locations were analysed). Likewise, Gutiérrez et al. (2017) did not
detect any effect of latitude on parasite richness across shorebird species which often
use mudflats as feeding grounds. These findings are in line with a recent meta-
analysis on drivers of parasite richness, including terrestrial and freshwater environ-
ments (Kamiya et al. 2014), which emphasises that drivers of large-scale patterns in
parasites of mudflats still remain to be identified.

3 Effects of Parasites on Mudflat Hosts and Ecosystems

3.1 Direct Effects on Individual Hosts and Host Populations

By definition, parasite-host interactions result in negative effects on infected hosts.
These direct negative effects are inflicted on individual hosts, but they can also have
knock-on effects on host populations. This is best illustrated in the case of parasite-
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induced mortalities of infected hosts (Fig. 9.5a). Mortality induced by many para-
sites is intensity-dependent, i.e. host mortality increases with the infection intensity
of a parasite (Fredensborg et al. 2004). If parasite infection levels are relatively high
in a host population, this can result in the mortality of many infected hosts, and this
in turn can affect the size and dynamics of the host population. For example, heavy
trematode infections in populations of the amphipod Corophium volutator on
mudflats have been reported to lead to significant decreases in population size, or
even local extinction (Meissner and Bick 1997; Jensen and Mouritsen 1992). Such
parasite-induced mortalities often coincide with other environmental stressors. In
particular, temperature stress has been reported to be associated with mass mortal-
ities of infected hosts. For example, in the amphipod C. volutator, mass mortalities
of amphipods in the field have been associated with coinciding high temperatures,
and elevated infection levels with trematode metacercariae (Jensen and Mouritsen
1992). In addition, laboratory experiments have confirmed the link between

Direct effects on mudflat hosts and populations

Indirect effects on mudflat communities

a)

b)

Parasite-induced mortality Sub-lethal effects

Density-mediated Trait-mediated

Reduced
reproduction

P P

PP

Fig. 9.5 Conceptual diagram illustrating direct and indirect effects of parasites on mudflat hosts,
populations and communities. (a) Direct effects of parasites (P) include parasite-induced mortality
and sub-lethal fitness effects such as reduced host reproduction on infected individual hosts which
can have knock-on effects on host population sizes. (b) Indirect effects of parasites on mudflat
communities occur when parasites alter the density (density-mediated indirect effects) or morpho-
logical, physiological or behavioural traits (trait-mediated indirect effects) of infected hosts such as
the burrowing ability of cockles. In turn, this can affect other organisms living on mudflats, and
ultimately affect community composition. For details, see text (Published with kind permission of
© David Thieltges 2018. All Rights Reserved).
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temperature stress and increased host mortality in infected amphipods (Mouritsen
and Jensen 1997; Jensen et al. 1998; Meissner and Bick 1999; Larsen and Mouritsen
2014). Temperature stress does not only elevate host mortality in crustaceans, but
has also been reported to increase mortality in infected gastropod (McDaniel 1969;
Tallmark and Norrgren 1976) and bivalve hosts (Thieltges 2006a). However, in
some cases, the resistance of trematode-infected gastropods to temperature stress and
prolonged exposure is not different from that of non-infected ones, or is even higher
(Riel 1975; Sousa and Gleason 1989; Berger et al. 2001; Bates et al. 2011). Besides
temperature, other environmental stressors may also elevate parasite-induced mor-
tality. For example, oxygen depletion reduces the survival of juvenile bivalves
infected with metacercarial stages of trematodes (Wegeberg and Jensen 1999).
Likewise, desiccation can lead to higher mortality in hydrobiid snails infected with
trematodes (Jensen et al. 1996).

Instead of inducing direct host mortality, parasites can also have more subtle
sub-lethal effects on hosts living on mudflats. Such sub-lethal effects on individual
hosts may also have knock-on effects on host populations, just like the ones
observed in the case of parasite-induced mortality. A good illustration for this is
provided by the ubiquitous trematodes that can be found in many gastropods living
on mudflats (Fig. 9.5a). These trematodes infect the gonadal tissue of their hosts and
usually lead to partial or total castration, which strongly reduces the life-time fitness
of infected individuals (Lauckner 1980; Huxham et al. 1993; Mouritsen and Jensen
1994). In host species that have pelagic larvae for dispersal, even the castration of the
majority of individual hosts in a local population may not affect the size of the
population much, since larval stages originating from elsewhere can supply the local
recruitment. However, in host species that have direct development, parasitic cas-
tration of a large proportion of the host population may significantly lower local
population size. Indeed, such population-level effects of parasite infections have
been observed in several gastropod species with direct development (Lafferty 1993;
Sokolova 1995; Fredensborg et al. 2005). Similar population-level effects have also
been suggested in the case of the direct-developing amphipod C. volutator, in which
metacercarial stages of trematodes reduce the brood size of infected females, which
in turn likely reduces local abundance of the amphipods (Bick 1994; McCurdy et al.
1999).

Besides host castration and reduced reproduction, other sub-lethal effects of
parasites that have been observed in typical mudflat hosts include, among others,
changes in growth rates of molluscs, both in a positive (Mouritsen and Jensen 1994;
Probst and Kube 1999) and negative direction (Mouritsen et al. 1999; Thieltges
2006b; O’Connell-Milne et al. 2016), reduced condition of bivalves (Wegeberg and
Jensen 2003; Stier et al. 2015; O’Connell-Milne et al. 2016), reduced filtration rates
in bivalves (Stier et al. 2015), morphological changes such as the shape and
ornamentation of shells in gastropods (Hay et al. 2005; Thieltges et al. 2009e),
behavioural changes such as impaired burrowing ability in bivalves (Lauckner 1983;
Thomas and Poulin 1998) and potential changes in animal personality such as
reduced boldness in infected snails (Seaman and Briffa 2015). Many of these
sub-lethal direct effects may also trigger knock-on effects on host population sizes
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and dynamics, and some of them may also trigger further indirect effects on other
organisms and eventually affect entire mudflat communities, as discussed below.

3.2 Indirect Effects on Host Communities

Many of the direct effects that parasites inflict on their hosts can also lead to indirect
effects on other species living next to the infected hosts, and ultimately affect entire
mudflat communities. These indirect effects occur when parasites either alter the
density of infected hosts (density-mediated indirect effects), or change morpho-
logical, physiological or behavioural traits of infected individuals (trait-mediated
indirect effects; see Hatcher et al. (2006) and Hatcher and Dunn (2011) for a detailed
account of indirect effects of parasites in general).

Density-mediated indirect effects of parasites are closely linked to the parasite-
mediated mortalities discussed above. These mortalities can trigger indirect effects,
particularly in host species that have strong impacts on local habitats and commu-
nities themselves. For example, parasites that affect ecosystem engineers (organisms
that create or modify habitat for other organisms—Jones et al. 1997; see Chap. 10)
may trigger particularly strong indirect effects on local communities (Thomas et al.
1999). A good example for this is the parasite-induced mortality of the amphipod
Corophium volutator discussed above (Fig. 9.5b). With their tube-building activity,
these amphipods can stabilise the sediment and lead to a typical mudflat topography
of subtle hummocks and shallow puddles (Mouritsen and Poulin 2002). A parasite-
induced mass mortality event of the amphipods on a mudflat in the Danish Wadden
Sea lead to increased erosion, which altered the sediment grain size composition, and
ultimately turned the mudflat topography into a flat surface (Mouritsen et al. 1998;
Mouritsen and Poulin 2002). In turn, this change in habitat condition affected other
organisms on the mudflat, leading to altered composition and abundance of
macrofauna (Jensen and Mouritsen 1992; Larsen et al. 2011, and see Chap. 10).
Similar indirect effects are likely to result from other parasite-induced host mortal-
ities, but to date we lack information on the extent of such density-mediated indirect
effects of parasites in mudflat ecosystems.

Examples for the other type of indirect effects induced by parasites, the so-called
trait-mediated indirect effects, are also known from mudflat ecosystems. One of the
prime examples comes from mudflats in New Zealand where the New Zealand
cockle Austrovenus stutchburyi is infected by the trematode Curtuteria australis
and other closely-related trematode species (Fig. 9.5b). These parasites infect the
foot of the cockles, and compromise the burrowing ability of infected individuals,
which normally live 1–2 cm beneath the sediment surface, so that infected cockles
end up laying on the sediment surface (Thomas and Poulin 1998; Mouritsen 2002b).
This behavioural alteration of the cockle is considered to be adaptive for the
parasites, as it increases predation by birds, which serve as definitive host for the
trematodes (Thomas and Poulin 1998). Besides increasing transmission for the
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parasites, the parasite-induced surfacing of cockles also indirectly affects other
organisms. The cockles laying on the sediment surface change the local near-bed
hydrodynamics and sedimentation rates by being obstacles, and they no longer act as
bioturbators of the sediment. Together, these effects lead to an increase in general
macrobenthic species richness and a higher abundance of many macrobenthic taxa
and functional groups (Mouritsen and Poulin 2005). The parasite-induced surfacing
of cockles has further been linked with changes in primary and secondary production
on mudflats (Mouritsen and Poulin 2006). Similar trait-mediated effects have been
observed in the mudsnail Hydrobia ulvae which serves as first intermediate host to a
range of trematode species. Field experiments indicated that infected snails indi-
rectly alter the abundance and composition of primary and secondary producers via
direct effects of parasite infections on the snails’ grazing behaviour (Mouritsen and
Haun 2008). Other morphological, physiological or behavioural traits of hosts that
are induced by parasites in infected hosts are likely common in mudflat ecosystems
but, as in the case of density-mediated indirect effects, the extent and relevance of
these indirect effects for mudflat ecosystems have yet to be determined.

3.3 Effects on Food Chains, Food Webs and Ecosystem
Energetics

The various impacts of parasites on their hosts can also affect food chains, food webs
and ecosystem energetics in mudflat ecosystems (Lafferty et al. 2008). One way of
doing so is that parasites can mediate the strength of trophic interactions and thus
alter the flow of energy in food chains. For example, trematode infections in
periwinkles (Littorina littorea) can reduce the grazing activity of infected snails,
so that they consume only about 2/3 of the macroalgal biomass compared to
uninfected snails, thus altering the interaction strength between primary and second-
ary consumers (Clausen et al. 2008). Likewise, parasites can also mediate the
interaction strength between secondary and tertiary consumers. Periwinkles
(L. littorea) are often infected with the shell-boring polychaete Polydora ciliata.
Infected snails have weaker shells caused by the burrowing activity of the worms,
and this affects predation of snails by shore crabs (Carcinus maenas), a typical
predator on mudflats along the North East Atlantic coast. Experiments have revealed
that crab predation rates on infected snails are almost five times higher than on
uninfected individuals (Buschbaum et al. 2007). Similar effects of increased preda-
tion by crabs on P. ciliata-infected hosts have also been observed in blue mussels
Mytilus edulis (Ambariyanto and Seed 1991; Kent 1981). In some cases, such
increased predation on infected individuals is associated with increased transmission
of parasites to down-stream hosts if the predator serves as a host for the parasite. If
the increased predation on infected hosts results from behavioural or other trait
changes induced by the parasite, this is often considered to be an adaptive host
manipulation by the parasite, as it increases its transmission (Poulin 2010). As
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parasite manipulation of host behaviour may be common in tropically transmitted
parasites such as the ubiquitous trematodes occurring on mudflats, parasites may
often alter the interaction strength between predators and infected prey in typical
mudflat food chains. However, such parasite—mediated alterations of trophic inter-
actions and energy flows are not well-studied in mudflat ecosystems to date.

Besides mediating trophic interaction strength between predators and their
resources in food chains, parasites may also act as a resource themselves (Johnson
et al. 2010). One of the ways in which this can occur, is that the many free-living
infective stages produced by parasites may be utilised by non-hosts as a resource. In
particular, the production of cercarial stages of trematodes is known to be substantial
in mudflat ecosystems (Kuris et al. 2008; Thieltges et al. 2008c), and many organ-
isms that do not serve as host for these parasites are known to prey on these stages
(Thieltges et al. 2008a, b; Welsh et al. 2014). Studies on parasite-inclusive food
webs indicate that this predation on infective stages may be common, as this link
type comprises 10–20% of the total number of trophic links in food webs of mudflat
ecosystems (Thieltges et al. 2013b). However, whether the consumption of infective
stages significantly contributes to the diet of consumers in mudflat ecosystems is
largely unknown. Another mechanism through which parasites can become a
resource themselves, is when parasites are consumed by a predator together with
their host but when the predator is not a suitable host for the co-ingested parasites.
This so-called concomitant predation of parasites is not well understood but studies
on parasite-inclusive food webs indicate that it may actually be very common, as
about 60–70% of the trophic links in food webs of mudflat ecosystems are concom-
itant predation links (Thieltges et al. 2013b). Besides potentially contributing addi-
tional nutritional value to predators in some cases, this type of predation on
parasites may also have important consequences for parasite population dynamics
(Lafferty et al. 2008). However, the magnitude and relevance of parasites as
resources in mudflat food webs remain to be investigated.

Besides affecting predation strength and potentially serving as a resource to
predators, parasites can also affect the general structure and topology of entire
food webs (Lafferty et al. 2008; Dunne et al. 2013). When parasites are integrated
into topological food webs, i.e. food webs that denote the presence or absence of
trophic interactions but do not include information on interaction strength or energy
flow, they generally increase food web size and the density of trophic interaction
links (connectivity; Lafferty et al. 2008; Dunne et al. 2013). Many of these topo-
logical changes are probably not unique to parasites, but simply result from the
addition of species to the webs (Dunne et al. 2013). However, the predation on
parasites by predators discussed above seems to result in unique contributions to
food web motifs, i.e. patterns of small interactive units of food webs (Dunne et al.
2013; Cirtwill and Stouffer 2015). However, it is largely unknown whether these
changes in food web structure in topological webs, that denote only absence or
presence of trophic interactions, also affect energy flows in food webs. The standing
stock of some parasite groups can be high in mudflat food webs, e.g. the biomass of
trematodes in gastropods equals that of birds in Californian estuaries (Kuris et al.
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2008). However, the contribution of parasites to the flow of energy through
entire food webs remains to be unravelled.

4 Parasites and Global Change

4.1 Species Invasions

Mudflats face a multitude of challenges in the course of ongoing global changes
which also have repercussions for parasites and their hosts in mudflat ecosystems.
Among these challenges are biological invasions. In marine ecosystems such as
mudflats, species are mainly introduced via ballast water from large ships and by
aquaculture practices such as oyster farming (Grosholz 2002; Bax et al. 2003, see
also Chap. 14). Many introduced species do not spread much and remain at relatively
low population levels, whereas others become invasive, disperse widely and cause
considerable impacts on native ecosystems (Grosholz 2002, see also Chap. 11).
Parasites can have various roles in the invasion process, and on the impacts of
invasive species in mudflats and other marine ecosystems (see Goedknegt et al. 2016
for a recent review). First of all, invasive species are often released from parasite
infection pressure in their recipient ecosystems and this may facilitate the establish-
ment and spread of invasive species. Such a release from parasites results from the
fact that introduced species often lose all or most of their own native parasites in the
course of the introduction, due to various invasion barriers. For example, parasites
may not survive the transport stage or do not find suitable intermediate and definitive
hosts in the new environment (Torchin et al. 2003; Blakeslee et al. 2013). The
resulting low parasite burden may give the invader a competitive benefit over native
competitors, and thus facilitate its establishment and spread (Torchin et al. 2003;
Blakeslee et al. 2013). However, once arrived in a new environment, invasive
species may acquire local native parasite species. This may reduce their initial
competitive advantage, but it may also affect native hosts of the parasites if the
parasite species’ population size is amplified by the invasive species, resulting in
greater infection levels in native species (parasite spillback—Kelly et al. 2009).
Invasive species may also co-introduce parasites which can affect native host species
as well (parasite spillover—Prenter et al. 2004; Kelly et al. 2009). For example,
Pacific oysters (Crassostrea gigas) that have been introduced to Europe for aqua-
culture purposes have co-introduced an intestinal parasitic copepod (Mytilicola
orientalis) which has spilled over to native mussels, cockles and Baltic tellins
(Goedknegt et al. 2017) and which has negative effects on host condition
(Goedknegt et al. in review).

While such parasite spillover effects have negative effects for native host species,
invasive species such as the Pacific oyster can also have positive effects on native
hosts, by reducing their infection levels with native parasites. They can do so by the
transmission interference mechanisms discussed above. For example, Pacific oysters
are very efficient filter feeders, and can remove cercarial stages of trematodes from
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the water above mudflats (without becoming infected themselves), and thus reduce
infection levels in native hosts such as mussels (Thieltges et al. 2009d).
Other invasive species can also interfere with parasite transmission on mudflats
(Welsh et al. 2014), but our understanding of the full range and magnitude of the
effects of invasive species on parasites and their hosts in mudflat ecosystems is still
very limited. With the globally increasing number of species introductions to
coastal ecosystems, this will be an important future research field.

4.2 CO2 Double Trouble: Temperature Increase and Ocean
Acidification

Other global challenges affecting mudflat ecosystems include the effects of anthro-
pogenic emissions of carbon dioxide (CO2) which have increased atmospheric CO2

levels by nearly 40% since the beginning of the industrial revolution (Salomon et al.
2007). The resulting effect on marine ecosystems is twofold: an increase in seawater
temperature, and an increase in pH, due to the dissolution of CO2 in seawater,
leading to a phenomenon called ocean acidification (Doney et al. 2009; Orr et al.
2005; Hoegh-Guldberg and Bruno 2010). Based on the strong temperature-
dependency of many parasite transmission processes such as in trematodes, a
potential increase in infection levels under increasing water temperatures has been
suggested (Poulin 2006; Poulin and Mouritsen 2006). For some host species that are
sensitive to temperature stress and parasite infections, future temperature increases
may thus have strong impacts on host population dynamics. For example, population
dynamic modelling of trematode infections in amphipod hosts suggest strong pop-
ulation declines, and even local extinction at future elevated temperatures in mudflat
ecosystems in Europe and New Zealand (Mouritsen et al. 2005; Studer et al. 2013a;
Fig. 9.6).

However, in other host species increased temperatures may offset negative effects
of infections. For example, periwinkles (Littorina littorea) show reduced feeding
rates when infected with trematodes at normal summer water temperatures (18 �C),
but at elevated temperatures that are predicted to occur under climate change (21 �C),
feeding rates did not differ between infected and uninfected periwinkles (Larsen and
Mouritsen 2009). In other cases, increased temperatures may not lead to elevated
infections levels in hosts in the first place as, for example, observed in cockles
infected with trematode metacercariae where cercarial emergence is limited during
hot days (de Montaudouin et al. 2016). Many trematode species may also exhibit a
relatively high acclimation capacity, so that cercarial development, emergence and
survival, as well as the survival of miracidia, will not be much influenced by
temperature across a rather broad range of optimal temperatures (Morley 2011,
2012; Morley and Lewis 2013, 2015). Hence, the actual effects of climate change
on parasites and their hosts will not be universal, but will most likely be parasite- and
host-specific.
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Parasites and hosts will not only be affected by temperature, but also by other
environmental stressors, which may result in complex interactions. For example, a
multifactorial experiment on the survival of cercariae of the intertidal trematode
Maritrema novaezealandensis identified significant interactions among temperature,
salinity and ultraviolet radiation (Studer and Poulin 2013), suggesting that the effects
of future temperature increases on parasite-host interactions on mudflats will most
likely be driven by a complex interplay of factors, rather than by simple temperature
effects. Similar caveats with respect to predictions of future parasite infection levels
on mudflats also apply to the effect of ocean acidification on marine parasites and
their hosts. Here, the effects of increased seawater pH on parasites and their hosts
also seem to be species-specific, and also interacting with other factors, such as
temperature and salinity (Koprivnikar et al. 2010; MacLeod and Poulin 2015, 2016).
Hence, more research will be necessary to characterize the complex interplay of
major drivers of infection levels, and the resulting impacts on hosts in specific
parasite-host interactions, to allow realistic predictions of changes in parasite infec-
tion levels under future temperature increases and ocean acidification.

Besides invasive species, temperature increases and ocean acidification, coastal
mudflat ecosystems face other human-induced challenges such as habitat degrada-
tion, eutrophication and overfishing (see Chaps. 13 and 14). We do not know much
about the impact of these various stressors, and more research will be needed to
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Fig. 9.6 Model simulation output of annual population fluctuations (density m�2) of the amphipod
Paracalliope novizealandiae infected with the trematode Maritrema novaezealandensis under
various climate change scenarios: current conditions (+0 �C; black line), an increase in the mean
temperature of 0.6 �C (dark grey line), and an increase of 0.7 �C (light grey line). Shown are the
simplified population trajectories predicted for the first 10,000 days (�27 years) of 80-year model
runs. Data based on Studer et al. (2013a).
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identify and quantify their effects on parasite-host interactions in mudflat
ecosystems.

5 Conclusion and Outlook

In this chapter, we have illustrated and explored the many ways in which parasite-
host interactions can affect host populations, communities and food webs in mudflat
ecosystems, equalling in importance similar effects resulting from other species
interactions such as predation and competition. However, although our knowledge
of the ecology of parasites in mudflat ecosystems has grown considerably during the
last two decades, there are still many aspects that await further investigation, as we
have pointed out throughout the chapter. Possibly the greatest challenge preventing
the full inclusion of parasites in ecological studies of mudflat ecosystems is, as we
also stressed with respect to meiofauna in Chap. 5, the reluctance of marine
ecologists to investigate small organisms whose identification and quantification
have traditionally required expert taxonomical expertise. However, modern tools can
facilitate rigorous studies of parasite diversity and abundance for
non-parasitologists. For example, environmental DNA, or eDNA, approaches can
allow the detection of parasite species and the estimation of their relative abundance
with a non-invasive method based on samples of water or sediment (Bass et al.
2015). Similarly, in the future, the establishment of DNA barcode databases could be
used for the quick and easy identification of multiple parasite taxa by non-experts,
without the need for detailed morphological examinations (Leung et al. 2009). The
rapidly-decreasing costs of gene sequencing should make such new technologies
very attractive for future parasite-inclusive studies of mudflat ecosystems.
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