WP Task	Title	Partners involved		2020 -	Year 1			2021 -	Year 2		2	022 - Year	3		2023	- Year 4			2024 - Y	Year 5	$\overline{}$
		(leaders in bold)	1	2	3	4	1	2	3	4		2 3	4	1	2	3	4	1	2	3	4
A.1	Technical transitions and Energy innovations Hybrid Wave-Storage Device and Integration	DIFFER RUG, Ocean Grazer BV														_	$\overline{}$	\vdash	-	-	-
A1.1	Create mechanical design integrated scale prototype	RUG, Ocean Grazer BV	Р	Р	Мо	t,Mo	Мо	Мо	D,Mo	t											
A1.2	Design and implement mechatronics and control systems	RUG		Р	Мо	Мо	D,Mo	C,Pr		D,L	Т	_				-					
A1.3 A1.4	Develop predictive OG-Hybrid models and optimize design Build the scale prototype	RUG RUG, Ocean Grazer BV			Р	Mo	Mo	Mo P	t,Mo Pr	L	D,L D,L	Т			-	-					
A1.5	Design, execute and assess wave tank experiments	RUG							P	L		L D,									
A1.6	Compare experiments and model results for validation	RUG										Sy Sy	Т								
A1.7 A1.8	Definition and assessment of scenarios Critical components and subsystems	RUG, Ocean Grazer BV RUG. Ocean Grazer BV	P	Mo P	Мо	Mo	Мо	t													
A1.9	Development of integrated OEP model	RUG, Ocean Grazer BV						Мо	Mo	Мо	Mo N	vio M	t								
A1.10	Case study of OEP performance based on several scenarios	RUG, Ocean Grazer BV											Sy	Sy	Sy	t					
A1.11 A.2	Outreach to relevant innovation programmes in offshore energy Floating Solar Platforms	RUG, Ocean Grazer BV TUD, Engie, MARIN, OoE, TNO		1						-	-		С	С	С	С	R	_	\rightarrow	-	
A2.1	FSP Concept design	TUD, Engle		Р	t										-						
A2.2	FSP Mooring system	TUD, OoE			Р	Мо	Мо	t								1					
A2.3 A2.4	FSP model development and verification	TUD. TNO		-	Р	Mo	Mo Mo	Mo Mo		Mo t	Mo :	Sy T	_		 	ļ					
A2.4 A2.5	FSP Loading phenomena and failure mechnanisms FSP design, execution, and assessment of model tests	TUD, INO TUD, MARIN					IVIO	P	Sy P	L	D	Pr D	Sy	t		<u> </u>					
A2.6	FSP comparison of results and validation	TUD											Sy	Sy	Sy	Т					
	FSP Design case study	TUD, Engie										_	-		Sy	Sy	Sy	T	\rightarrow		
A.3 A3.1	Power to Molecules (P2M) Electrode-electrolyte development	DIFFER	Р	Р	L	L	L	L													
A3.2	Electro-chemical CO2 cell development	DIFFER		Р	L	L	L	L	L	T,t											
	Integration Electrochem Cell with plasma/light stimulus	DIFFER DIFFER							L	L	L L	Pr T,t	L T,t,L			-					
A4.1	Recapture of CO2 Modelling of new DAC materials using Density Functional Theory	DIFFER					Р	Р	1	1 1	1	1 1	T,t		-	-					
A4.2	Material development for Microwave Swing Regeneration	DIFFER							Р	Р	L	L L		L	L	T,L	T,t				
A4.3	DAC Process flow analysis and performance optimisation	DIFFER												Р	L	L,Pr	L,Pr	Pr,L	T	T	T
A.5	Liquefied Hydrogen	TUD, GTT, Engie, TNO		P											<u> </u>	·}					
A5.1 A5.2	Literature study & material properties screening Material selection	TUD, GTT, Engie TUD, GTT, Engie		-	t P	Sy	t				_	-			+	-					
A5.3	Material-H2 tests at room temperature	TUD, TNO				P	Ĺ	L	D	Т											
A5.4	Material-(L)H2 tests at cryogenic temperature	TUD, TNO	ļ	-		ļ				Р	L	L D		<u> </u>		ļ	1			T	
A5.5 A5.6	Advanced material characterization Prediction of material behavior and material selection	TUD, GTT, Engie, TNO	ļ									S)	Sy Mo	t Mo	Mo	Sy	Sy,T	т			
A.6	Artificial Islands	TUD, MARIN, Deltares, TNO											IVIU	IVIU	IVIU	Jy	Jy,1				
A6.1	Description of configurations and processes	TUD, MARIN, Deltares, TNO			Р	Р	Р	t								ļ					
A6.2 A6.3	Selection of numerical tools D trial tests	TUD, MARIN, Deltares TUD	ļ	ļI		Р	Р	Р	Р	P	-	T		ļ	 	ļ	ļ!	 	Т		
A6.3 A6.4	Demonstrator by Marin / Deltares	TUD, Deltares				<u> </u>			L	L	D	T P	Pr	D	Т	ļ		ļ			
	Validation of the numerical and empirical models	TUD														Sy	Sy		Т		
A6.6	Case study	TUD, Deltares, TNO															Sy	Sy	T		
B B.1	Optimal biodiversity and carrying capacity	Deltares								_	_	_	-		1	1	\vdash		\rightarrow	\rightarrow	
B1.1	Primary production as basis for the Carrying Capacity Novel high resolution method to measure primary production	NIOZ, UT/ITC, RWS, Deltares NIOZ, UT/ITC, Deltares	P,L	F,D	F,D	D	L,t,T		F,D	D	L,t F	,D	D,L	D,t,T	F,D	F,D	D	Т		Sy	R
B1.2	Automated measurements phytoplankton abundance & functional type	NIOZ	P,L	F,D	F,D	D	L,t	F,D	F,D	D		,D F,I	D,L	D,t,T	F,D	F,D	D	Ť	Pr	Sy	R
B1.3	Effect water column disturbance by wind turbines on primary production	RWS, NIOZ	P,L			L	L,t	F,D			L,t	F,0		D,t,T	F,D	F,D	D	Т	Pr	Sy	R
B1.4 B1.5	Remote sensing based primary production models	NIOZ, UT/ITC, Deltares	P,L P,L			L	L,t		Mo		Mo, T		D,L D,L	Mo		D D	D, Mo	T T		Sy Sy	
B.2	Spatio-temporal dynamics of potential carrying capacity Fouling macrofauna biomass on artificial structures	WMR, NIOZ, WUR, Boskalis, Shell, OOE	P,L			-				U	L,t		D,L	D,t,T						эу	\neg
B2.1	Biomass on man-made structures	WMR, WUR, Boskalis, Shell, OOE	L,P	F,L,P	F,L	L,D	L,D	F,L		L,D		,L,t F,I		L,D	F,L	F,L	L,D	L,D	D		
	Species composition	WMR	L,P	F,L,P	F,L	L,D	L,D	F,L				,L F,L		L,D	F,L	F,L	L,D	L,D	D		
B2.3 B2.4	Nutrient cycling Future developments 2020, 2050	NIOZ, WMR, WUR, OOE WMR, WUR, NIOZ	Р	Р	Р	Р	Pr	Pr, F	F	D	Pr P	r,F F	D P	D	D	T D	Cv.	Cv.		т	
B.3	Future developments 2030-2050 Restoration in and around windfarms	NIOZ, BuWa, WMR, Boskalis, Shell											P	U	U		Sy	Sy			\neg
B3.1a	Benthic faunal recovery	NIOZ, Shell	Р	Р	F	L		L		L		P F	L	L	L	D	Т	R		С	
B3.1b	Sediment development	NIOZ, Shell	P	Р	F	L		L		L		P F	L	D	Т	ļ	ļ!	R		С	
B3.2a B3.2b	Defining suitable water quality for shellfish reefs Quantifying seafloor stability for shellfish reef establishment	NIOZ, WMR, BuWa NIOZ, BuWa, Boskalis	P		F F	L	F	L	F F	L		T T			-	ļ	ļ		R R	C C	
B.4	Offshore structures as biotope for seabirds and fish	WMR, NIOZ			-	-	-									1					\neg
B4.1	ESAS data analysis	WMR, NIOZ	Р	F	D	D,t	D	D	D	Т											
	Fish Profiler	WMR, NIOZ	ļ	-		P	P	F	D	D		F D			T	ļ	ļ!	 			
B4.3 B4.4	Seabird foraging Modelling food web effects	WMR, NIOZ WMR, NIOZ				Р	Р	F	D	D	D	F Pr		D D	D	Sy	Т				
B.5	Microbial interactions with the marine built environment	NIOZ, WMR, OoE, SeaRangers														,					
B5.1a	Altered occurrence of harmful algal blooms (HAB)	NIOZ, OoE, SeaRangers	Р	Р	F, O	F, D	F,L	F,L		F,L,T	F,L I	,L F,I		F,L	F,L	F,L	F,L	D	Pr,D		Sy,R
B5.1b B5.2a	Potential enrichment of shellfish pathogens Links of aquaculture and plastic marine debris	NIOZ, WMR NIOZ, Sea Rangers	L	F,L	F F,L	F,L,D	L L	L F,L		F,L F,L,D		L F,I		L	F,L	F,L F,L,T	F,L F,L,D	D D	D D		Sy,R Sy,R
	Impacts of disturbance on microbial communities	NIOZ, Sea kangers NIOZ, WMR	L	F,L	F,L	F,L,U	F,L	F,L		F,L		,L D		Sy	Sy,R		R,T	U	U	Sy	oy,n
B.6	Synthesis for sustainable use and optimal biodiversity	Deltares, NIOZ																			
B6.1	Formulation of offshore wind scenarios	Deltares, NIOZ	P	P	Mo										ļ	<u> </u>	<u> </u>	ļ			
B6.2 B6.3	Model runs on hydrodynamic effects of large scale offshore wind farms Model scenario studies on effects offshore wind on primary productivity	Deltares, NIOZ Deltares, NIOZ		P P	Mo P	Mo Mo	Mo Mo	Mo Mo		Mo Mo	Mo N	vio Mi	T	Mo	Мо	Mo	T	-			
B6.4	Model scenario studies on shellfish grazing in wind farms	Deltares, NIOZ		Р	P	Mo	Mo	Мо		Mo		vio M		Мо	Mo	Mo	t,C				T
B6.5	Model scenario's offshore wind, natural grazers and aquaculture	Deltares, NIOZ								Мо	Mo N	vio M	Мо	Мо	Мо	Мо	R		R,C,Sy		T
C C.1	Marine food production	WMR	ļ								i			ļ	T	·	1				
	Farming in the North Sea Optimizing management strategies in seaweed and mussel culture	WMR, NIOZ, NZB, WPR, MAE WMR, NZB	Р	F,L	F,L	F,L	F,L	t				L				L		· · · · · · · · · · · · · · · · · · ·		T	
C.1.2	Environmental sustainability	WMR, WPR, NIOZ						P	F,L	F,L	F,L I										
C.1.3	Carrying capacity for culturing seaweed and mussels	WMR, NIOZ, NZB	<u> </u>				-	-				P	F,L	F,L	D	T,R	T	С	T]
C.2 C2.1	Fisheries in transition fish habitat use and migration	WU, WMR, WECR WU, WMR	P	F	D	Mo	Mo	Мо	t	D	т				 						
C2.1	Fisheries Dynamics Model	WU, WMR, WECR				.710	Mo	Mo				S M	Мо	Т	<u> </u>						
C2.3	Benthic impacts	WMR, WU										S M		Мо	Мо	Мо	Т				
C.3	Seaweed proteins	NIOZ, WMR, HZ, HAS	_		E .			I	F 1	-	F.1.		-		F .	ļ				·	
C3.1 C3.2	Selection most suitable native North Sea seaweed species Variations in abiotic condition affecting proteins	NIOZ, WMR, HZ, HAS NIOZ, WMR, HZ, HAS	P P	F, L F, L	F, L F, L	F, L	F, L F, L	F, L F, L				, L F,		F, L	F, L F, L	F, L F, L	T	F, L F, L	F, L F, L	F, L F, L	T T
	Molecular properties of raw and processed protein-rich products	NIOZ, WMR, HZ, HAS	P	F, L	F, L	F, L	F, L	F, L				, L F,		F, L	F, L	F, L	T	F, L		F, L	T
C.4	Carrying Capacity for seaweed and shellfish farming	NIOZ, Deltares																			
	Field and laboratory observations	NIOZ Doltaros	Р	F,L	F,L	L,D	T,L Mo	F,L,Mo		T,D	Me	40	Tex	ļ	 	ļ	ļ!	 			
C4.2 C4.3	Model simulations Limiting conditions and advice for sustainable farming	NIOZ, Deltares NIOZ, Deltares	l	-		P, Mo	Mo	Мо		D,Mo P, Mo		Mo Mo		Mo	Mo	Mo	T.R	ļ			
C.5	Synthesis marine food production	WMR, NIOZ								,		1971	.410	0	0		-,,,				
C5.1	Ecological feasibility	WMR, NIOZ									Р	D M	t,W	D	Мо	T,W					
C5.2	Scenario's for future marine production Enabling Change: Socio-Economic and Legal research	WMR, NIOZ TIU						-		-+			-		-	D	Mo	D	W,Mo	Sy,T	R,Sy
D.1	Role of International Nature Conservation Law	TiU	P	P	W	F	F	F	F	D	D	D D	D	t	W	С	Pr	Pr	Pr	T	R,Sy
D.2	Governing Offshore Energy Installations	RUG	P	P	w	F	F	F	F	D		D D	D	t	W	С	Pr	Pr	Pr		R,Sy
D.3	Integrated assessment of the social-ecological system	WECR, vHL, I&W, LNV, WU-ENP								\Box										Ţ	
D3.1 D3.2	Integrated assessment frame of policy objectives and competing claims Enhancing assessment model MAGNET with North Sea interactions	WECR, vHL, I&W, LNV, WU-ENP WECR, vHL, I&W, LNV, WU-ENP	P	P P	W P	F F	F F	F	Pr	Pr D	Pr D N	Pr Pr Mo Mi	Pr Mo	Pr Mo	W	C	C	t Pr	T	Ţ	R,Sy R,Sy
	Quantification trade-offs social, economic, ecological objectives	WECR, VHL, 18-W, LNV, WU-ENP	 	r	P	P	F	F	D F	D D		D M		Mo	Mo	Pr Pr	Pr Pr	Pr Pr	t		R,Sy R,Sy
D3.4	Comparison Dutch vs. international North Sea management scenarios	WEcR				Р	Р	D		Мо	Mo N	o M	Мо	Mo	W	Pr	Pr	Pr	t	Т	R,Sy
D3.5	Quantification of North Sea management scenarios	WECR, vHL, I&W, LNV, WU-ENP				Р	P	D	Мо	Мо	Mo M	No M	Мо	Mo	W	Pr	Pr	Pr	t		R,Sy
D.4	Advancing the Ecosystem Services (ES) application	WECR, VHL, ECORYS, CBS, I&W, LNV			\44	_	-	-	Dr.	Dr	Dr	0		De	344	<u></u>				T .	D.C.
D4.1 D4.2	North Sea multi-use scenarios and transition analyses Ecosystem service values in ecological and human systems	WECR, vHL, Ecorys, I&W, LNV WECR, Ecorys, vHL	P	P	W P	F F	F	F	F	Pr D	Pr D N	Pr Pr Vlo Mi	Pr Mo	Pr Mo	W Pr	C Pr	C Pr	C Pr	t		R,Sy R,Sy
D4.3	Multi-use valuation in ecological and human systems	WEcR, Ecorys, CBS			P	P	F	F	F	F		D M		Mo	Мо	Pr	Pr	Pr	t		R,Sy
D4.4	Policy analyses with bow-tie and advice on ES applications for MSFD	WECR, vHL, Ecorys, I&W, LNV				Р	Р	F	F	F	F	F D	D	Pr	W	Pr	Pr	Pr	t	T	R,Sy
D.5 D5.1	Integrated approach towards sustainable transitions Colleting data and information	HAME, NIOZ, WU, Deltares HAME, NIOZ, WU, Deltares	P	D	D,Sy	R.C.t	n	D.	D.S.v.	C+	D.	D D:	v C+	P	-	D.C.	C+	D	n	D.Svr	C.t
	Collating data and information Writing overview publications	HAME, NIOZ, WU, Deltares HAME, NIOZ, WU, Deltares	ν	U	D,Sy P	R,C,t D	D Sy,D	D Sy,D	D,Sy Sy	C,t T,R		D D,S y,D Sy		D D	Sy,D	D,Sy Sy	C,t T,R	D D	D Sy,D	D,Sy Sy	C,t T,R
D5.3	Determination of missing links in the research	HAME, NIOZ, WU, Deltares				P	D D	Sy,D	Sy	R		y,D Sy		D	Sy,D	Sy	R	D	Sy,D	Sy	R
м	Management, Stakeholder involvement & Outreach	NIOZ																			
	· Management 9. Consideration	NIOZ	M	٧	М	М	М	M	M	M		M M		M	M	M	М	M	M	M	M
M.1	Management & Coordination	NIO7 all partners		p				Δ/							A.				M	c	
M.2	Management & Coordination Stakeholder involvement; networking Outreach	NIOZ, all partners NIOZ, SdN, all partners	С	N C	S C	G,N C	S C	N C	S C	G,N C		N S C C	G,N C	S C	N C	S C	G,N C	S C	N C	S C	G,N C

C = Communication (dissemination)

D = Data handling, services

Mo = Model development, validation, runs, scene
F = Fieldwork, sampling and monitoring
G = General Assembly
D = Data handling, services
N = Networking
S = Steering and Stakeholder committee meetings
S y = Steering and Stakeholder committee meetings
S y = Synthesis
F = Portoatropt yets and analyses
P = Plan development
T = Thesis, Poblications (peer reviewed)
T = Report, conference papers
P = Prototype, demonstrator, concept
W = Workshop (and evaluations)