

Intro

Aerobic Methane Oxidation (AMO) helps regulate the methane (CH_4) release from the ocean into the atmosphere.

- The Deepwater Horizon (DWH) blowout led to large oil & gas emissions
- Oil & gas discharge stimulated growth of methanotrophs and other hydrocarbon utilizing bacteria Valentine et al., 2010; Dubinsky et al., 2013)

Figure 1: Map of the Northern Gulf of Mexico from Prouty et al. (2016). Showing (1) in red the sediment trap deployment locations; (2) with a black star the location of the Deep water horizon (DWH) and (3) the days of oiling after the blowout in greyscales.

Objectives

- identify AMO bacteriohopanepolyol (BHP) biomarkers (e.g. amino-BHPs and methylcarbamate-BHPs) in pre- & post-blowout sinking particulate matter, collected in sediment traps
- examine possible community shifts induced by extreme gas emissions

Result & Discussion

- Bacteriohopanetetrol (BHT) is the most abundant BHP –
- but BHTs are ubiquitous in marine settings (Talbot et al., 2008)
- relative abundances of aminotriol increase after the oil spill, but aminotriol is synthesised by various bacteria (Talbot et al., 2008) • No distinct change of AOM lipids or other BHPs after the oil spill
- Absolute BHP abundances mainly follow the mass flux

Figure 2: Relative abundances of (A) all BHPs identified in pre and post oil spill samples – with summed BHT isomers and summed adenosylhopanes (AdHs); (B) relative AdH abundances, showing 14 different identified AdHs; (C) Mississippi-Atchafalaya river discharge – data obtained from USGS – ScienceBase Catalog (on 29th, July 2021)

Conclusion

- No clear shift towards lipids indicating an increase in AOM activity due to a rapid recovery after the oil spill?
 - ii. Or are these proxies not applicable in marine settings?
- Adenosylhopanes (soil marker) do not correspond to river discharge in our samples east of the Mississippi-Atchafalaya Delta

NIOZ is part of the institutes organisation of NWO

Unaltered composition of bacteriohopanepolyols (BHPs) after a deep water oil spill, **Gulf of Mexico**

I. Hölscher^a, N. Richter^a, F. Mienis^a, E.C. Hopmans^a, J.S. Sinninghe Damsté^{a,b}, S. Schouten^{a,b}, D. Rush^a

Aerobic Methane Oxidation (AMO) after the Deepwater Horizon oil spill

no observed change in the distribution of lipid biomarkers for AMO in the water column of the Gulf of Mexico

aminobacteriohopanepentol (aminopentol)

methylcarbamate-aminobacteriohopanepentol (MC-aminopentol)

Adenosylhopanes = soil marker BHPs

often used to interpret soil input into coastal systems (e.g.: Cooke et al., 2009; Zhu et al., 2011)

This has been challenged \rightarrow maybe also be produced in oxygen deficient zones (ODZ) (Kusch et al., 2021)

absolute lipid abundances of BHT: the sum of all identified AdHs: aminotriol: and aminopentol before and after the oil spill. Empty circles display sample points below detection limit.

Possible biomarker for (marine) aerobic methane oxidation (AMO)

MC-aminopentol = described as possible new proxy for marine AMO (Rush et al., 2016)

Aminopentol = often used as proxy for AMO but seems to be impractical in marine settings

^a NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands

^b Utrecht University, Faculty of Geosciences, Department of Earth Sciences, P.O. Box 80.121, 3508 TA Utrecht, the Netherlands

References:

Cooke, M. P., van Dongen, B. E., Talbot, H. M., Semiletov, I., Shakhova, N., Guo, L., & Gustafsson, Ö. (2009). Bacteriohopanepolyol biomarker composition of organic matter exported to the Arctic Ocean by seven of the major Arctic rivers. *Organic Geochemistry*, *40*(11), 1151-1159.

Dubinsky, E. A., Conrad, M. E., Chakraborty, R., Bill, M., Borglin, S. E., Hollibaugh, J. T., ... & Andersen, G. L. (2013). Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. *Environmental science & technology*, *47*(19), 10860-10867.

Kusch, S., Wakeham, S. G., & Sepúlveda, J. (2021). Diverse origins of "soil marker" bacteriohopanepolyols in marine oxygen deficient zones. *Organic Geochemistry*, 151, 104150.

Prouty, N. G., Fisher, C. R., Demopoulos, A. W., & Druffel, E. R. (2016). Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill. *Deep Sea Research Part II: Topical Studies in Oceanography, 129,* 196-212.Valentine et al 2010 Dubinsky et al 2013 Talbot et al 2008

Rush, D., Osborne, K. A., Birgel, D., Kappler, A., Hirayama, H., Peckmann, J., ... & Talbot, H. M. (2016). The bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria reveals new biomarker signatures of aerobic methanotrophy in marine systems. *PLoS One*, *11*(11), e0165635.

Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., & Farrimond, P. (2008). Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Organic Geochemistry, 39(2), 232-263.

Valentine, D. L., Kessler, J. D., Redmond, M. C., Mendes, S. D., Heintz, M. B., Farwell, C., ... & Villanueva, C. J. (2010). Propane respiration jump-starts microbial response to a deep oil spill. *Science*, *330*(6001), 208-211.

Zhu, C., Talbot, H. M., Wagner, T., Pan, J. M., & Pancost, R. D. (2011). Distribution of hopanoids along a land to sea transect: Implications for microbial ecology and the use of hopanoids in environmental studies. *Limnology and Oceanography*, *56*(5), 1850-1865.